Abstract
In this work, we present the theoretical study of the vibrationally resolved absorption (ABS), electronic circular dichroism (ECD), emission (EMI), and circularly polarized luminescence (CPL) spectra of a boron-fused double helicene, with a detailed and complete discussion of the alternative possible approximate methods. Given the fact that few examples of CPL calculations exist, the potential energy surfaces (PESs) have been constructed and compared with Adiabatic (AH) and Vertical Hessian (VH) models. All the vibronic calculations have accounted for Duschinsky mixings, Franck-Condon (FC) effect and Herzberg-Teller (HT) contribution. Moreover, different HT expansions have been checked and compared, by computing the derivatives of the electric and magnetic dipole transition moments around the equilibrium geometries of the initial and final states. Our results show that both AH and VH models have well reproduced the experimental vibronic structures and VH model shows a better performance in the simulation of spectral lineshapes. They also show that HT effects dominate the shapes of EMI and CPL, tuning the relative heights of the different vibronic peaks, improving the agreement with the experiment for EMI. Moreover, HT effects are the main reason for the mirror-symmetry breaking between ECD and CPL spectra. Furthermore, interesting interference effects between FC and HT contributions have also been addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.