Abstract

The potential-dependent (2x2)-3CO-->(radical19x radical19)R23.4 degrees-13CO adlayer phase transition on Pt(111) with 0.1M H(2)SO(4) electrolyte was studied using femtosecond broadband multiplex sum frequency generation (SFG) spectroscopy combined with linear scan voltammetry. Across the phase boundary the SFG atop intensity jumps, and at the same time the SFG spectrum of threefold CO sites is transformed into a bridge site spectrum with a small decrease in integrated SFG intensity. The SFG atop intensity jump and three fold-to-bridge intensity drop are noticeably different from what would be expected for these structures on the basis of coverage alone. This occurs because the SFG signal is sensitive to both the coverage and changes in the local field that result from a changing adlayer structure. We derive an equation that allows us to correct the SFG intensities for these effects using information derived from infrared absorption-reflection spectroscopy (IRAS) and second-harmonic generation (SHG) measurements. With this correction, the SFG results agree well with what would be expected for a transition between perfect adlattices. A small (approximately 20%) discrepancy in the SFG determination of atop coverage is attributed to either a small amount of surface disorder or uncertainties in the SFG, SHG, and IRAS measurements. SFG is also used to examine the reversibility hysteresis and kinetics of the phase transition and its dependence on electrolyte composition. The phase transition is reversible with an approximately 150 mV anodic overpotential and the forward (2x2)-->(radical19x radical19) transition is slower than the reverse. Repeated cycles of phase transition indicate that the 25 microm electrolyte layer used here does not appreciably distort the potential-coverage relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.