Abstract

Resonance Raman spectra have been recorded for heme a derivatives in which the oxygen atom of the formyl group has been isotopically labeled and for Schiff base derivatives of heme a in which the Schiff base nitrogen has been isotopically labeled. The 14N-15N isotope shift in the C = N stretching mode of the Schiff base is close to the theoretically predicted shift for an isolated C = N group for both the ferric and ferrous oxidation states and in both aqueous and nonaqueous solutions. In contrast, the 16O-18O isotope shift of the C = O stretching mode of the formyl group is significantly smaller than that predicted for an isolated C = O group and is also dependent on whether the environment is aqueous or nonaqueous. This differences between the theoretically predicted shifts and the observed shifts are attributed to coupling of the C = O stretching mode to as yet unidentified modes of the heme. The complex behavior of the C = O stretching vibration precludes the possibility of making simple interpretations of frequency shifts of this mode in cytochrome c oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.