Abstract

Structural changes that occur in lignin surface-modified with nickel nanoparticles during microwave- assisted dry reforming (DR) are studied via vibrational spectroscopy. IR spectroscopy reveals that the nickel deposition has a considerable effect on the structural characteristics of lignin. It is found that nickel deposition from an acetate salt substantially reduces the intensity of absorption bands at 1700 cm−1. This finding suggests that Ni(2+) interacts mostly with formate groups, which are subsequently oxidized to carboxylate groups. It is shown that with the deposition of metallic nickel particles from a colloidal nickel solution in toluene prepared via metal vapor synthesis, the nickel particles do not interact with the surface functional groups of the lignin. Deep conversion of an organic mass of lignin by DR to form synthesis gas reduces the intensity of the absorption bands of the identified functional groups and raises the intensity of the absorption bands of the aromatic rings. Raman spectroscopy shows that during lignin conversion, the aromatic rings condense partially to form amorphized graphite. In operando studies reveal that the DR of nickel-modified lignin heated to 200–400°C results in the isolation of vanillic oxygenates that are probably intermediate products of reforming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.