Abstract
4-Aminobenzoic acid (4ABA) is a biologically relevant, small organic molecule with two protonation sites: the amino group (N-protomer) and the carboxyl group (O-protomer). The O-protomer is energetically preferred in the gas-phase, while the higher energy N-protomer can be trapped using aprotic solvents such as acetonitrile during electrospray ionization. Here, we focus on the structure of the O-protomer, which can occur in three low-lying isomeric forms that result from different orientations of the OH groups relative to the benzene ring. We report the vibrational spectra of both N- and O-protomers of the cryogenically cooled ions in the gas phase over the spectral range 800–4000 cm−1. The bands arising from the OH stretches are isolated from the nearby NH stretching fundamentals using isotopic labeling as well as by analysis of the shifts in these fundamentals upon attachment of D2 and N2 molecules to the OH groups of the O-protomer. The spectra of isomers derived from the different locations of the adducts were isolated using two-color, IR-IR photofragmentation spectroscopy. The docking motifs by which the O-protomer binds to another 4ABA molecule is also explored and found to feature a bifurcated arrangement involving attachment of both OH groups of the protonated head group to the carbonyl group of the neutral partner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.