Abstract

Fluoroformate, also known as carbonofluoridate, is an intriguing molecule readily formed by the reductive derivatization of carbon dioxide. In spite of its well-known stability, a detailed structural characterization of the isolated anion has yet to be reported. Presented in this work is the vibrational spectrum of fluoroformate obtained by infrared action spectroscopy of ions trapped in helium nanodroplets, the first application of this technique to a molecular anion. The experimental method yields narrow spectral lines, providing experimental constraints on the structure that can be accurately reproduced using high-level ab initio methods. In addition, two notable Fermi resonances between a fundamental and combination band are observed. The electrostatic potential map of fluoroformate reveals substantial charge density on fluorine as well as on the oxygen atoms, suggesting multiple sites for interaction with hydrogen bond donors and electrophiles, which may in turn lead to intriguing solvation structures and reaction pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call