Abstract

Theoretical computations have been carried out for 4-silaspiro(3,3)heptane (SSH) in order to calculate its structure and vibrational spectra. SSH was found to have two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. The puckering and tilting reduce the D2d symmetry to C2. Nonetheless, the vibrational assignments can be done quite well on the basis of D2d symmetry. This is confirmed by the fact that all but the lowest E vibrations show insignificant splitting into A and B modes of C2 symmetry. However, the observed splittings of the lowest frequency modes do confirm the lower conformational symmetry. The calculated infrared and Raman spectra were compared to the experimental spectra collected for the vapor, liquid, and solid states, and the agreement is excellent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.