Abstract
The FTIR and FT Raman spectra of the first generation dendrimers, possessing oxybenzaldehyde (G1) or oxyphenylazobenzaldehyde (G2) terminal groups and sodium 4-[4-oxyphenyl)azo]-benzaldehyde (SOAB) were studied. The structural optimization and normal mode analysis were performed for dendrimer G2 on the basis of the density functional theory (DFT). These calculations gave the frequencies of vibrations, infrared intensities and Raman scattering activities for the E- and Z-forms of azobenzene unit. The energy differences between the E- and Z-forms are 12.62 and 25.16kcal/mol for SOAB and G2. The calculated in gas phase dipole moments for the E- and Z-forms are equal to 20.86, 18.28D (SOAB) and 7.56, 8.88D (G2). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendrimer G2 molecule has a concave lens structure with planar OC6H4CHNN(CH3)PS and OC6H4NNC6H4CHO fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of dendrimer G2 were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The strong band 1598cm−1 in the IR spectra show marked changes of the optical density in dependence of substituents in the aromatic ring. The differences in the IR and Raman spectra of SOAB and G2 for the E- and Z-forms of azobenzene units were cleared up. During structural isomerization of azobenzene units, redistribution of band intensities appears to a much higher extent than frequency shifts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.