Abstract

The structural and vibrational properties of streptocyanine dyes, expressed as [(CH3)2N(CH)xN(CH3)2]+ClO4- (called SCx in this paper) with x = 2n + 1 (n = 0−10), are examined by measuring the infrared (IR) and Raman spectra in solution and in the polycrystalline state (for x = 1, 3, 7, 9) and by carrying out density functional calculations at the BHandHLYP/6-31G* level. It is shown that the strong IR bands observed and calculated in the 1800−800 cm-1 region arise from the normal modes containing large contributions from the vibrations along the bond-alternation coordinate of the conjugated chains. As the conjugated chain becomes longer, the strongest IR band shifts toward the lower-wavenumber side, inducing noticeable changes in the spectral pattern, and the total IR intensity increases significantly. The shifts to lower wavenumbers and the changes in the spectral pattern are explained by the decrease in the intrinsic wavenumber of the bond-alternation mode. A two-state model Hamiltonian, which involves e...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.