Abstract

The vibrational frequencies and molecular geometry of (R)- and (rac)-4-phenly-1,3-oxazolidin-2-one (4-POO) in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths are described better by HF while bond angles are reproduced more accurately by DFT (B3LYP). Comparison of the observed fundamental vibrational frequencies of (R)-POO and (rac)-4-POO and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.