Abstract

The complex conformational behavior of 3-phenylprop-2-en-1-ol (cinnamyl alcohol) and its saturated analogue 3-phenyl-1-propanol were investigated at the DFT-B3LYP/6-311G **, MP2 and MP4(SDQ) levels of theory. The unsaturated 3-phenylprop-2-en-1-ol was predicted to exist in Cg and Gg1 conformational mixture as a result of competitive conjugation and hyperconjugation interactions in the molecule. The saturated 3-phenyl-1-propanol was predicted to exist predominantly in a Ggg structure as a result of predominant steric hindrances in the alcohol. Only the one predominant form was identified in the infrared and Raman spectra of both alcohols. The excellent agreement between the calculated wavenumbers and the observed ones in the infrared and Raman spectra supports the conclusion that each of the two alcohols is present in one predominant form in the condensed phases. The vibrational frequencies of 3-phenylprop-2-en-1-ol and 3-phenyl-1-propanol in their lowest energy forms were computed at the B3LYP level and tentative vibrational assignments were provided on the basis of combined calculated and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.