Abstract
Structural characterization of protonated phosphorylated serine, threonine, and tyrosine was performed using mid-infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations. The ions were generated and analyzed by an external electrospray source coupled to a Paul ion-trap type mass spectrometer. Their fragmentation was induced by the resonant absorption of multiple photons from a tunable free electron laser (FEL) beam. IRMPD spectra were recorded in the 900-1850 cm(-1) energy range and compared to the corresponding computed IR spectra. On the basis of the frequency and intensity of two independent bands in the 900-1400 cm(-1) energy range, it is possible to identify the phosphorylated residue. IRMPD spectra for a 12-residue fragment of stathmin in its phosphorylated and nonphosphorylated forms were also recorded in the 800-1400 cm(-1) energy range. The lack of spectral congestion in the 900-1300 cm(-1) region makes their distinction facile. Our results show that IRMPD spectroscopy may became a valuable tool for structural characterization of small phosphorylated peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.