Abstract

The water dimer cation, (H2O)2+, has long served as a prototypical reference system for water oxidation chemistry. In spite of this status, a definitive explanation for the anomalous—and dominant—features in the experimental vibrational spectrum [Gardenier, G. H.; Johnson, M. A.; McCoy, A. B. J. Phys. Chem. A, 2009, 113, 4772–4779] has not been determined, and harmonic analyses qualitatively fail to reproduce these features. In this computational study, accurate quantum chemistry methods are combined with a fully coupled, six-dimensional anharmonic model to show that the unassigned bands are the result of resonant mode interactions and strong anharmonic coupling. Such coupling is fundamentally due to the unique electronic structure of this open-shell ion and the manner in which auxiliary modes affect the natural charge-transfer properties of the shared-proton stretch. These unique vibrational signatures provide a key reference point for modern spectroscopic and mechanistic analyses of water-oxidation catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.