Abstract

We study the ultrafast relaxation dynamics of hydrated proton clusters in acetonitrile using femtosecond mid-infrared pump-probe spectroscopy. We observe a strong dependence of transient absorption dynamics on the frequency of excitation. When we excite the OH vibrations with frequencies ≤3100 cm–1, we observe an ultrafast energy relaxation that leads to the heating of the local environment of the proton. This response is assigned to the OH vibrations of the water molecules in the core of the hydrated proton cluster. When we excite with frequencies ≥3200 cm–1, we observe a relatively slow vibrational relaxation with a T1 time constant ranging from 0.22 ± 0.04 ps at νex = 3200 cm–1 to 0.37 ± 0.02 ps at νex = 3520 cm–1. We assign this response to water molecules in the outer part of the hydrated proton cluster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.