Abstract
The multiple-scattering theory of Lax is used to give equations for the displacement-displacement Green's functions for a crystal containing substitutional defect atoms. A self-consistent method is described within this formalism that is most suitable for large concentrations of mass defects. The essential approximation is best in three dimensions, but even then is not completely satisfactory for low concentrations of light defects. The resulting self-consistent equation is solved numerically using realistic three-dimensional densities of states. The behavior of the density of states and spectral functions for the imperfect crystal is discussed in some detail for different concentrations and mass ratios. The results are compared with recent machine calculations and found to be in good agreement. They are also used to reinterpret experimental results for Ge-Si alloys with some success.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.