Abstract

We present a calculation for the vibrational properties of the ordered surface alloy Au(110)-1×2-Pd on a crystalline substrate of Au. The surface phonon dispersion curves and the local vibrations densities of states (LDOS) are calculated in the harmonic approximation for the system, using the phase field matching theory (PFMT) method and associated real space Green’s functions. In particular, it is shown that the surface alloy presents optic vibrational modes above the Au bulk bands, along the directions of high-symmetry [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] of the corresponding two-dimensional Brillouin zone. Measurements of the surface phonon dispersion branches can hence be made by different techniques such as helium atom scattering (HAS) to compare with. The calculated LDOS for Au and Pd atomic sites in the four top surface atomic layers span a wider range of frequencies than those for the individual Au(110) or Pd(110) metallic surfaces. These LDOS provide a spectral signature for the progressive transition from the surface dynamics to that of the Au crystal bulk. Knowledge of these LDOS for the surface alloy can also serve as an input for modeling the diffusion and reaction rates of chemical species at its surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call