Abstract
This article presents a collection of vibrational overtone spectra of hydrocarbons in cryogenic solutions. Vibrational overtone spectra of ethane and propane dissolved in liquid argon and n-butane and isobutane dissolved in liquid krypton were recorded between 5000 and 14,000 cm(-1). Spectral regions for the first four overtones were measured using a Fourier transform spectrophotometer. The fifth overtone (Deltaupsilon = 6) spectra were recorded with a double beam (pump-probe) thermal lens technique using concentrations as low as 10-3 mole fraction. We obtained the C-H (Deltaupsilon = 6) spectra of (a) liquid ethane at 100 K and ethane in solutions in liquid Ar at 92 K and liquid N2 at 85 K, (b) liquid propane at 148 K and propane in liquid Ar at 93 K, (c) n-butane in liquid Kr at 129 K, (d) n-pentane in liquid Xe at 160 K, and (e) isobutane liquid at 135 K and isobutane in liquid Kr at 130 K. Local-mode parameters were calculated for primary, secondary, and tertiary C-H oscillators in solution and compared with gas-phase local-mode parameters. The peak frequency shift (Deltaomega) from gas phase to solution is explained by the change in harmonic frequency and anharmonicity in solution with respect to the gas-phase values. The bandwidth (Deltaomega1/2) of the (Deltaupsilon = 6) C-H absorption bands of ethane in solution can be explained in terms of collisions with the solvent molecules.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.