Abstract
We report an experimental and theoretical vibrational study of the high-performance piezoelectric GeO2 material. Polarized and variable-temperature Raman spectroscopic measurements on high-quality, water-free, flux-grown α-quartz GeO2 single crystals combined with state-of-the-art first-principles calculations allow the controversies on the mode symmetry assignment to be solved, the nature of the vibrations to be described in detail, and the origin of the high thermal stability of this material to be explained. The low-degree of dynamic disorder at high-temperature, which makes α-GeO2 one of the most promising piezoelectric materials for extreme temperature applications, is found to originate from the absence of a libration mode of the GeO4 tetrahedra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.