Abstract

The effects of collision energy (E(col)) and six different H(2)CO(+) vibrational states on the title reaction have been studied over the center-of-mass E(col) range from 0.1 to 2.6 eV, including measurements of product ion recoil velocity distributions. Ab initio and Rice-Ramsperger-Kassel-Marcus calculations were used to examine the properties of complexes and transition states that might be important in mediating the reaction. Reaction is largely direct, despite the presence of multiple deep wells on the potential surface. Five product channels are observed, with a total reaction cross section at the collision limit. The competition among the major H(2) (+) transfer, hydrogen transfer, and proton transfer channels is strongly affected by E(col) and H(2)CO(+) vibrational excitation, providing insight into the factors that control competition and charge state "unmixing" during product separation. One of the more interesting results is that endoergic charge transfer appears to be controlled by Franck-Condon factors, implying that it occurs at large inter-reactant separations, contrary to the expectation that endoergic reactions should require intimate collisions to drive the necessary energy conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.