Abstract

Multiquantum relaxation of highly vibrationally excited nitric oxide on noble metals has become one of the best studied examples of the Born-Oppenheimer approximation's failure to describe molecular interactions at metal surfaces. When first reported, relaxation of highly vibrationally excited NO occurring in collisions with Au(111) surfaces exhibited the largest vibrational inelasticity seen in molecule-surface collisions, and no system has been found to date exhibiting a greater vibrational inelasticity. In this work, we compare the relaxation of NO(v = 11) in scattering events on Ag(111) to that on Au(111). The relaxation probability and the average vibrational energy loss are much higher when scattering from Ag(111). We discuss possible reasons for this remarkable phenomenon, which may be related to the dissociation of NO, possible on Ag(111) at lower energy compared with Au(111).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call