Abstract

Electron transport in single-walled carbon nanotubes (SWCNTs) is extremely sensitive to environmental effects. SWCNTs experiencing an inhomogeneous environment are effectively subjected to a disorder potential, which can lead to localized electronic states. An important element of the physical picture of such states localized on the nanometer-scale is the existence of a local vibronic mainfold resulting from the localization-enhanced electron-vibrational coupling. In this Letter, scanning tunneling spectroscopy (STS) is used to study the quantum-confined electronic states in SWCNTs deposited on the Au(111) surface. STS spectra show the vibrational overtones identified as D-band Kekulé vibrational modes and K-point transverse out-of plane phonons. The presence of these vibrational modes in the STS spectra suggests rippling distortion and dimerization of carbon atoms on the SWCNT surface. The present study thus, for the first time, experimentally connects the properties of well-defined localized electronic states to the properties of their associated vibronic states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call