Abstract

The dissociation dynamics of the Rydberg radical H3O and the deuterated isotopologs have been studied by dissociative charge exchange of H3O(+) with Cs. Center-of-mass kinetic energy release distributions were measured with a fast-beam translational spectrometer and compared with direct dynamics quasiclassical trajectory calculations with initial conditions from an ab initio potential energy surface for H3O(+). The experimental branching fractions for dissociation of each isotopolog were obtained and compared with the calculated branching fractions. The dominant dissociation channel for all species is elimination of an H/D atom, and the water product was formed with a significant vibrational inversion in stretching vibrations that varies with the mass of the leaving atom in the dissociation. Branching fractions for the mixed isotopologs show that H atom elimination is favored over D atom elimination. Given the importance of H3O(+) in plasmas, astrochemistry, and in condensed phases, the striking energy partitioning found in this neutralization process is notable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call