Abstract

The vibrational energy relaxation (VER) rates for H2 and D2 in liquid argon (T=152 K, rho=1.45x1022 cm-3) are calculated using the linearized semiclassical (LSC) method (J. Phys. Chem. 2003, 107, 9059, 9070). The calculation is based on Fermi's golden rule. The VER rate constant is expressed in terms of the quantum-mechanical force-force correlation function, which is then estimated using the LSC method. A local harmonic approximation (LHA) is employed in order to compute the multidimensional Wigner integrals underlying the LSC approximation. The H2-Ar and D2-Ar interactions are described by the three-body potential of Bissonette et al. (J. Phys. Chem. A 1996, 105, 2639). The LHA-LSC-based VER rate constants for both D2 and H2 are found to be about 2-3 orders of magnitude slower than those obtained experimentally. However, their ratio agrees quantitatively with the corresponding experimental result. In contrast, the classical VER rate constants are found to be 8-9 orders of magnitude slower than those obtained experimentally, and their ratio is found to be qualitatively different from the corresponding experimental result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.