Abstract

In a previous molecular dynamics simulation study, the kinetic energy relaxation of photolyzed heme in solvated carbonmonoxymyoglobin was found to be a single exponential decay process with the relaxation time constant 5.9 ps [Sagnella, D. E.; Straub, J. E. J. Phys. Chem. B 2001, 105, 7057]. The strong electrostatic interaction of the isopropionate side chains and the solvating water molecules was shown to be the single most important “doorway” for dissipation of excess kinetic energy in the heme. In this work, the results of a molecular dynamics simulation study of heme “cooling” in two modified myoglobins, in which (1) the two isopropionate side chains in the heme are replaced by hydrogen or (2) the proximal histidine is replaced by glycine, His93Gly, are presented. For each “tailored” protein, the relaxation of the heme's excess kinetic energy is found to be a single exponential decay process. For the His93Gly mutant protein, the relaxation time is found to be 5.9 ps, in agreement with the relaxation t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.