Abstract
The vibrational dynamics of the various CH stretching modes in a fatty acid Langmuir-Blodgett film was studied using a resonant narrowband infrared (IR) laser pulse for pumping and a broadband femtosecond IR visible pulse pair for detection in a sum frequency spectroscopy setup. The resulting two-dimensional spectra indicate that pumping either the antisymmetric methyl or methylene stretch results in the transfer of energy to the other modes on a time scale faster than 2 ps. This rapid process is followed by energy redistribution to other modes, presumably the bending and internal rotational modes, with a time constant of approximately 85 ps. The formation of gauche defects is not observed within the first 250 ps. The whole spectrum recovers on a time scale of several nanoseconds, indicating dissipation of the excitation energy into the substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.