Abstract

In Statistical Energy Analysis (SEA) and more generally in all statistical theories of sound and vibration, the establishment of diffuse field in subsystems is one of the most important assumption. Diffuse field is a special state of vibration for which the vibrational energy is homogeneously and isotropically distributed. For subsystems excited with a random white noise, the vibration tends to become diffuse when the number of modes is large and the damping sufficiently light. However even under these conditions, the so-called coherent backscattering enhancement (CBE) observed for certain symmetric subsystems may impede diffusivity. In this study, CBE is observed numerically and experimentally for various geometries of subsystem. Also, it is shown that asymmetric boundary conditions leads to reduce or even vanish the CBE. Theoretical and numerical simulations with the ray tracing method are provided to support the discussion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.