Abstract
Fourier transform infrared spectra of the nu(s) band of the (CH2)(2)S-DF complex have been recorded at 0.1-0.5 cm(-1) resolution in a cooled cell and in a supersonic jet expansion seeded with argon. A sufficient density of (CH(2))(2)S-DF heterodimers is produced by a double injection nozzle device, which limits the possibility of reaction between thiirane and DF before the expansion. The observation of partially resolved PQR branch structures at cell temperatures as high as 252 K indicates relatively small effective line widths, which allow a detailed analysis of the underlying vibrational couplings and of the structural properties of the complex. The analysis of cell and free jet spectra in the temperature range 50-250 K is performed with a software package for the simulation and fitting of multiple hot band progressions in asymmetric rotors. The analysis reveals that the three low frequency hydrogen-bond modes are strongly coupled to the DF stretch with anharmonic coupling constants, which indicates a strengthening of the hydrogen bond upon vibrational excitation of DF. Rovibrational parameters and a reliable upper bound for the homogeneous line width have been extracted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.