Abstract
A single-parameter harmonic Hamiltonian based on local packing density and contact topology is proposed for studying residue fluctuations in native proteins. The internal energy obeys an equipartition law, and free energy changes result from entropy fluctuations only. Frequency--wave-number maps show communication between residues involved in slow and fast modes. Fast modes are strongly localized, resulting from the geometric irregularity of the structure. Comparison with experiments shows that slow and fast modes are associated, respectively, with function and stability. Specifically, domain motions and folding cores of HIV-1 protease are accurately identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.