Abstract

Linear and nonlinear IR spectroscopic studies of nucleic acids can provide crucial information on solution conformations of DNA double helix and its complex with other molecules. Carrying out density functional theory calculations of A-, B-, and Z-form DNA's, the authors obtained vibrational spectroscopic properties as well as coupling constants between different basis modes. The vibrational couplings that determine the extent of exciton delocalization are strongly dependent on DNA conformation mainly because the interlayer distance between two neighboring base pairs changes with respect to the DNA conformation. The Z-DNA has comparatively small interlayer vibrational coupling constants so that its vibrational spectrum depends little on the number of base pairs, whereas the A-DNA shows a notable dependency on the size. Furthermore, it is shown that a few distinctively different line shape changes in both IR and two-dimensional IR spectra as the DNA conformation changes from B to A or from B to Z can be used as marker bands and characteristic features distinguishing different DNA conformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.