Abstract
Valley degrees of freedom in transition metal dichalcogenides thoroughly influence electron-phonon coupling and its nonequilibrium dynamics. We conducted a first-principles study of the quantum kinetics of chiral phonons following valley-selective carrier excitation with circularly polarized light. Our numerical investigations treat the ultrafast dynamics of electrons and phonons on equal footing within a parameter-free ab initio framework. We report the emergence of valley-polarized phonon populations in monolayer MoS2 that can be selectively excited at either the K or K' valleys depending on the light helicity. The resulting vibrational state is characterized by a distinctive chirality, which lifts time-reversal symmetry of the lattice on transient time scales. We show that chiral valley phonons can further lead to fingerprints of vibrational dichroism detectable by ultrafast diffuse scattering and persist beyond 10 ps. The valley polarization of nonequilibrium phonon populations could be exploited as an information carrier, thereby extending the paradigm of valleytronics to the domain of vibrational excitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.