Abstract
The dependence of the intermolecular interaction potentials on the vibrational quantum numbers of the H2O molecule is derived for the H2O–Ne, H2O–Kr, and H2O–Xe systems. The broadening γ and shift δ coefficients are calculated for seven vibrational bands ν1, ν2, ν3, 2ν2, ν1 + ν2, ν2 + ν3, and ν1 + ν2 + ν3 of the H2O molecule from the absorption region 640–9550 cm−1. An analytical formula is suggested for calculation of the broadening coefficients γ at T = 296 K. It is shown that the excitation of stretching modes of the vibrations in the H2O molecule increases the broadening coefficients. The influence of the bending vibrations on γ is insignificant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.