Abstract
Zero-point vibrational corrections are computed at the BP86/AE1 level for the set of 50 transition-metal/ligand bonds that have recently been proposed as testing ground for DFT methods, because of the availability of precise experimental gas-phase geometries (Bühl and Kabrede, J Chem Theory Comput 2006, 2, 1282). These corrections are indicated to be transferable to a large extent between various density-functional/basis-set combinations, so that they can be used to estimate zero-point averaged r0g distances from re values optimized at other theoretical levels. Applying this approach to a number of popular DFT levels does not, in general, improve their overall accuracy in terms of mean and standard deviations from experiment. The hybrid variant of the meta-functional TPSS is confirmed as promising choice for computing structures of transition-metal complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.