Abstract

The influence of high-frequency horizontal vibrations on convection in the Hele-Shaw cell located in a uniform gravity field is considered experimentally and theoretically. Nonlinear regimes of vibrational convection in the supercritical region are examined. It is shown that horizontal vibrations (directed toward the wide sides of the cell) decrease the threshold of quasi-equilibrium stability. Regions of existence of one- and two-vortex steady flows are found, and unsteady regular and random regimes of thermal vibrational convection are considered. New random regimes in the Hele-Shaw cell are found, which result from nonlinear interaction of the “lower” modes responsible for the formation of regular supercritical convective regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call