Abstract

A recent study of photoinduced mixed-valency in the one-electron reduced form (μ-pz)[RuII(NH3)5]24+ of the Creutz-Taube ion used transient absorption spectroscopy with vis-NIR broadband detection to uncover a mixed-valent excited state with a typical intervalence charge transfer band and a nanosecond lifetime [Pieslinger et al. Angew. Chem., Int. Ed. 2022, 61, e202211747]. Herein, we use excited state dynamics simulations with implicit solvation to elucidate the electronic and vibrational evolution in the first 10 ps after the optical excitation. A manifold of excited states with weak interaction between the metal centers is populated already at time zero due to the breakdown of the Condon approximation and dominates the population of electronic states at short time scales (<0.5 ps). A long-lived vibrational wave packet mostly confined to oscillations of the metal center-bridge distances is observed. The oscillations are traced to the electronic structure properties of states with weak metal-metal coupling. The long-lived mixed-valent excited state of the Creutz-Taube ion analogue is formed vibrationally cold and has a more compact geometry. While experimentally, intersystem crossing and vibrational relaxation were deduced to be completed within 1 ps, our analysis indicates that both processes might persist at longer times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call