Abstract

Vibrational circular dichroism (VCD) spectroscopy has been widely used to study (bio)molecules in solution. However, its solid-state applications have been restricted due to experimental limitations and artifacts. Having overcome some of them, the first VCD study of nucleoside crystals is now presented. A two-orders-of-magnitude enhancement of VCD signal was observed due to high molecular order in the crystals and resulting supramolecular chirality. This allowed to obtain high-quality VCD spectra within minutes using minute amounts of samples. The VCD technique is extremely sensitive in detecting changes in a crystal order and is able to distinguish different hydration states of crystals. This elevates it to a new level, as a fast and efficient tool to study chiral crystalline samples. This study demonstrates that VCD is capable of near-instantaneous detection of hydration polymorphs and crystal degradation, which is of substantial interest in pharmaceutical industry (quality and stability control).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.