Abstract

We present the application of the recently implemented nuclear velocity perturbation theory, using the combined Gaussian and plane waves approach in CP2K, to the vibrational circular dichroism (VCD) spectra of a set of natural products. Even though the calculations were carried out for isolated molecules in the gas-phase limit, neglecting inter-molecular interactions and anharmonic effects, the match between simulated and experimental spectra is reasonable. We also study the influence of different density functionals on the conformational search and the resulting VCD spectra via group coupling matrices (GCMs). The GCM analysis reveals that the VCD signal can in some cases arise from moieties which are close to each other and in other cases from moieties far from each other. Differences in spectra obtained using different exchange–correlation density functionals can be attributed to interaction terms between different moieties in the molecules changing their sign.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.