Abstract
Peptide models built from cis- and trans-2-aminocyclobutane-1-carboxylic acids (ACBCs) are studied in the solid phase by combining Fourier-transform infrared spectroscopy (FTIR) absorption spectroscopy, vibrational circular dichroism (VCD), and quantum chemical calculations using density functional theory (DFT). The studied systems are N-tert-butyloxycarbonyl (Boc) derivatives of 2-aminocyclobutanecarboxylic acid (ACBC) benzylamides, namely Boc-(cis-ACBC)-NH-Bn and Boc-(trans-ACBC)-NH-Bn. These two diastereomers show very different VCD signatures and intensities, which of the trans-ACBC derivative being one order of magnitude larger in the region of the ν (CO) stretch. The spectral signature of the cis-ACBC derivative is satisfactorily reproduced by that of the monomer extracted from the solid-state geometry of related ACBC derivatives, which shows that no long-range effects are implicated for this system. In terms of hydrogen bonds, the geometry of this monomer is intermediate between the C6 and C8 structures (exhibiting a 6- or 8-membered cyclic NH⋯O hydrogen bond) previously evidenced in the gas phase. The benzyl group must be in an extended geometry to reproduce satisfactorily the shape of the VCD spectrum in the ν (CO) range, which qualifies VCD as a potential probe of dispersion interaction. In contrast, reproducing the IR and VCD spectrum of the trans-ACBC derivative requires clusters larger than four units, exhibiting strong intermolecular H-bonding patterns. A qualitative agreement is obtained for a tetramer, although the intensity enhancement is not reproduced. These results underline the sensitivity of VCD to the long-range organisation in the crystal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.