Abstract

The surface reaction between coadsorbed carbon monoxide and atomic oxygen has been characterized using high resolution electron energy loss spectroscopy, coupled with temperature programmed reaction spectroscopy on a Pt(111) surface characterized using Auger electron spectroscopy and low energy electron diffraction. Preferential oxidation of bridge bonded CO is not observed despite the fact that bridge bonded CO is adsorbed less vigorously than linearly bound CO. Saturation of the Pt(111) surface with one quarter of a monolayer of atomic oxygen completely suppresses the adsorption of bridge bonded CO. However, substantial coverages of bridge bonded CO can be coadsorbed if the Pt(111) surface is only partially saturated with atomic oxygen. The vibrational data for reaction of coadsorbed CO and atomic oxygen is consistent with a reaction mechanism involving reaction of mobile CO along oxygen island perimeters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.