Abstract

Functionalization of carbon nanotubes (CNTs) can be viewed as an important process by which the dispersion and solubility of CNTs in the matrices of nanocomposites are improved. Covalent functionalization can affect the mechanical behavior of CNTs. In this paper, the vibrational behavior of diethyltoluenediamines (DETDA) functionalized CNTs is investigated utilizing molecular dynamics simulations in canonical ensemble at room temperature. The models of simulations are divided into two categories of functionalized CNTs with regular and random distributions of DETDA polymers. The results demonstrate that natural frequency of functionalized CNTs is lower than that of pristine ones. Also, it is observed that buckling phenomenon occurs during vibration for functionalized CNTs with regular distribution of polymers. It is further observed that polymer mass and van der Waals (vdW) forces are responsible for frequency changes in functionalized CNTs with random and regular distribution patterns of CNTs, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.