Abstract

Broadband N2 vibrational coherent anti-Stokes Raman scattering (VCARS) thermometry was performed along the nozzle centerline of counter-flow diffusion flames. Fuel mixtures consisted of varying percentages of H2 in N2 and the oxidizer was air. We investigated the influence of varying the percentage of H2 in the fuel stream on the temperature profiles along the nozzle centerline. Measurements were performed, with varying global strain rates, both near and far from flame extinction. One-dimensional simulations, performed using Combustion Simulation Lab (COSILAB) software, show that the temperature profiles are relatively insensitive to the nozzle exit centerline velocity; implying that the 1-D simulations provide an excellent approximation of the real temperature profiles along the nozzle centerline. Various chemical mechanisms were employed within the COSILAB framework for comparison against VCARS temperature measurements. Simulations were also performed to evaluate the influence of thermal diffusion and nitrogen chemistry on nozzle centerline temperature profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.