Abstract

A total of 11 fundamental and 3 overtone bands of the formaldoxime isotopologue 13CD2NOH were identified using its Fourier transform infrared (FTIR) spectra which were recorded with a low resolution (0.50 cm−1) in the 500–4000 cm−1 region, and high resolution (0.00096 cm−1) in the 280–500 cm−1 region. Their relative infrared (IR) band intensities were also measured. Furthermore, a rovibrational analysis of the IR transitions of the ν12 band of 13CD2NOH was carried out using its high-resolution FTIR spectrum which was recorded at the Australian Synchrotron. A total of 1077 IR transitions of the C-type ν12 band were assigned and fitted using the Watson's A-reduced Hamiltonian in the Ir representation to derive its band center and the v12 = 1 state rovibrational constants up to all 5 quartic centrifugal distortion terms for the first time, with a root-mean-square (rms) deviation of 0.00044 cm−1. The band center of the ν12 band of 13CD2NOH were found to be 391.054446(36) cm−1. The ground state rovibrational constants up to all 5 quartic terms were determined for the first time by fitting 407 ground state combination differences (GSCDs) derived from the assigned IR transitions of the ν12 band of 13CD2NOH of this work. The rms deviation of the GSCD fit was 0.00040 cm−1. Additionally, all 3 rotational constants and 5 quartic centrifugal distortion terms of the ground state and 3 rotational constants of the v12 = 1 state of 13CD2NOH were computed from theoretical anharmonic calculations at two different levels of theory, B3LYP and MP2 with the cc-pVTZ basis set, for comparison with the experimental results. Close agreement was found for the calculated and experimental rovibrational constants of 13CD2NOH for both ground and v12 = 1 states. The vibrational anharmonic frequencies of the 12 fundamental bands of 13CD2NOH in the 280–4000 cm−1 region, and their IR band intensities were also calculated using B3LYP and MP2 with the cc-pVTZ basis set, and they were compared with the respective experimental data. Finally, the ground state rotational constants and the band center of the ν12 band of the cis conformer of 13CD2NOH were calculated and compared with those of the trans conformer of this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call