Abstract
Vibrational frequencies of three niobium normal modes of triniobium dicarbide neutral and cation have been determined from pulsed field ionization-zero electron kinetic energy photoelectron spectra. The niobium stretching mode has a frequency of 326 cm−1 in the neutral and 339 cm−1 in the ion. The two deformation modes have frequencies of 238 and 82 cm−1 in the neutral and a degenerate frequency of 258 cm−1 in the ion. The geometry of the triniobium dicarbide has been established by comparing the experimental spectra with theoretical calculations. The cluster has a trigonal bipyramid geometry with carbon atoms capping on each face of the metal frame. The cation cluster has D3h symmetry whereas the neutral cluster has lower symmetry resulting from a Jahn–Teller distortion. A second low-lying structure with doubly bridging carbon atoms has been identified by the calculations but has not yet been observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.