Abstract
Electronic and vibrational properties of different single-walled carbon nanotubes (SWNTs) interacting with a CO2 molecule are investigated through the use of density functional theory (DFT) calculations and the discrete variable representation (DVR) method, respectively. We observed a considerable geometry difference between pristine and doped nanotubes. Consequently, a greater binding energy between the former type of nanotubes and the adsorbing molecule is achieved, a fact that finds experimental support and leads us to consider cobalt-doped nanotubes as promising candidates for chemical sensors. From the vibrational point of view, we note that the zigzag chirality tends to present higher values of vibrational frequencies for most of the states considered regardless of the nanotubes being doped or not. The potential energy curves (PECs) for the interactions between CO2 and all of the considered nanotubes together with spectroscopic constants are provided, and the reliability of the performed calculations makes the data a useful source of comparison for future works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.