Abstract
The vibrational (γLv) and electronic (γLe) longitudinal second hyperpolarizabilities of increasingly large polysilane chains are determined at the Hartree–Fock 6-31G level by adopting both the double harmonic oscillator approximation and the infinite optical frequency finite field relaxation procedure. The relative importance of the electronic, Raman, infrared/hyperRaman and lowest-order anharmonicity contributions to the second hyperpolarizability is evaluated for the most common nonlinear optical (NLO) processes. At the double harmonic oscillator level of approximation the most contributing vibrational normal modes to γLv are characterized as a function of the polysilane chain length. Comparisons with experimental and other theoretical studies are carried out in what concerns the infrared and Raman vibrational spectra as well as the NLO properties of various oligosilanes and polysilanes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.