Abstract

Characterization and simulation of carbon nanotube-reinforced composites at large scale have been a concern of researchers in the past decade. This is due to the computational complication of considering many embedded carbon nanotubes (CNTs). However a simple meshing of organized CNT distribution in the matrix can ease this obstacle. In this study, a finite element approach is employed to investigate the elastodynamic behavior of a wavy CNT-reinforced composite structure. A three dimensional structure with up to 6400 uniformly distributed wavy CNTs is embedded in a polymer matrix. Each wavy nanotube is represented by a set of beam elements. The effect of nanotube waviness and volume fraction on the effective modulus of nanocomposite is evaluated and verified by previous studies. The results demonstrate that waviness tends to decrease the effective modulus of the structure. Furthermore, the natural frequencies of a nano structure at different boundary conditions are examined. The results reveal that the natural frequencies increase with volume fraction of CNT, while a nominal increase of CNT waviness decreases the natural frequencies sharply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.