Abstract

Structure, stability, and vibrational IR and Raman spectra of I(2)(*-) x nCO(2) clusters (n = 1-10) are reported based on first-principle electronic structure calculations. Several close-lying minimum energy structures are predicted for these solvated clusters following the quasi Newton-Raphson procedure of geometry optimization. Search strategy based on Monte-Carlo simulated annealing is also applied to find out the global minimum energy structures of these clusters. Successive addition of solvent CO(2) molecules to the negatively charged diatomic solute, I(2)(*-), is fairly symmetrical. Energy parameters of these solvated clusters are calculated following second-order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311+G(d) set of basis function (I atom is treated with 6-311G(d) set of basis function). The excess electron in these solvated clusters is observed to be localized mainly over the two I atoms. Average interaction energy between the anionic solute, I(2)(*-), and a solvent CO(2) molecule is approximately 129 meV in I(2)(*-) x nCO(2) clusters, and the average interaction energy between two solvent CO(2) molecules is approximately 85 meV in the case of neutral (CO(2))(n) clusters at MP2 level of theory. IR spectra show similar features in all these solvated clusters, depicting a strong band at approximately 2330 cm(-1) for C-O stretching and a weak band at approximately 650 cm(-1) for CO(2) bending modes. Degeneracy of the bending mode of a free solvent CO(2) unit gets lifted when it interacts with the charged solute I(2)(*-) to form a molecular cluster because of the change in structure of solvent CO(2) units. The vibrational band at the bending region of CO(2) in the Raman spectra of these anionic clusters shows a characteristic feature for the formation of I(2)(*-) x nCO(2) clusters showing a Raman band at approximately 650 cm(-1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.