Abstract

In the framework of our investigations on the analysis of vibrational spectra of amino acids (AAs) in hydrated media, Raman scattering and Fourier transform infrared (FT-IR) attenuated transmission reflectance (ATR) spectra of three alpha-amino acids with hydrophobic hydrocarbon side chains, i.e., alanine, valine, and isoleucine, were measured in H2O and D2O solutions. The present data complete those recently published by our group on glycine and leucine. This series of observed vibrational data gave us the opportunity to analyze the vibrational features of these amino acids in hydrated media by means of the density functional theory (DFT) calculations at the B3LYP/6-31++G* level. Harmonic vibrational modes calculated after geometry optimization on the clusters containing five water molecules interacting with H-donor and H-acceptor sites of amino acids are performed and allowed the observed main Raman and infrared bands to be assigned. Additional calculations on a cluster formed by leucine (L) and five water (W) molecules and the comparison of the obtained data with those recently published by our group on L+12W, allowed us to justify the number of hydration considered in the present report.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.