Abstract

The problem of irreversible targeted energy transfer is approached in a new way using the analogy between a system of two weakly coupled parametric pendulums or oscillators and nonadiabatic Landau – Zener tunneling in a two-state quantum system. This analogy predicts that efficient irreversible vibrational energy transfer is possible between two subsystems if the frequency of at least one of them changes adiabatically slowly with time, thus allowing an internal resonance to occur between them. We also show that evolution equations for the transition of the Landau – Zener tunneling type give a quantitative prediction for the part of the initially imparted energy that is retained asymptotically in the protected classical system. The findings made can be used for designing new types of energy traps for the dynamical protection of various mechanical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.