Abstract

AbstractIn vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time or weld penetration.; The effects of these parameters on weld quality were systematically studied by first butt welding thermoplastic specimens under controlled conditions, over a wide range of process parameters, and by then determining the strengths and ductilities of these welds by tensile tests. The three thermoplastics investigated are poly (butylene terephthalate), polyetherimide, and modified polyphenylene oxide. Changes in the weld pressure are shown to have opposite effects on the strengths of polyetherimide and modified polyphenylene oxide welds; Also, the weld frequency is shown to have a significant effect on the weldability of polyetherimide. The weldability data for these three thermoplastics are compared with data for polycarbonate. Under the right conditions, the strengths of butt welds in these materials are shown to equal the strength of the virgin polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.