Abstract

The paper presents development of vertical vibration simulation for a seated passenger in a moving vehicle is resulting from the bounce effect of the vehicle under various conditions. Although extensive research has been conducted in this field of study, the existing analysis were conducted on either the suspension of vehicle or the human body and not both. In this paper, the simulation model consists of three sub-systems, namely, vehicle suspension, seat suspension and human body model in which the vertical vibration is transmitted. By incorporating these sub-systems into the simulation, a correlation between mechanical and biological aspects can be formed between the three sub-systems. The transmission of vertical vibration in the validated simulation model provides a more realistic approach which can result to a better comparison to the real-life scenario. Parametric analysis of passive suspension system shows that lower mass ratio, higher stiffness ratio and lower damping coefficient results in better ride comfort. The incorporation of variable damper into the suspension system shows significant improvement in settling time, peak displacement and velocity, lesser discomfort rating and higher safety in passenger body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.